Biochemical characterization and relative expression levels of multiple carbohydrate esterases of the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate.
نویسندگان
چکیده
We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOS(FA,Ac)) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOS(FA,Ac), a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23 likely gives it the ability to hydrolyze substituents on the xylan backbone and enhances its capacity to efficiently degrade hemicellulose.
منابع مشابه
Physiology and genetics of xylan degradation by gastrointestinal tract bacteria.
Hemicelluloses or xylans are major components (35%) of plant materials. For ruminant animals, about 50% of the dietary xylans are degraded, but only small amounts of xylans are degraded in the lower gut of nonruminant animals and humans. In the rumen, the major xylanolytic species are Butyrivibrio fibrisolvens and Bacteroides ruminicola. In the human colon, Bacteroides ovatus and Bacteroides fr...
متن کاملComparison of substrate affinities among several rumen bacteria: a possible determinant of rumen bacterial competition.
Five rumen bacteria, Selenomonas ruminantium, Bacteroides ruminicola, Megasphaera elsdenii, Streptococcus bovis, and Butyrivibrio fibrisolvens were grown in continuous culture. Estimates of substrate affinities were derived from Lineweaver-Burk plots of dilution rate versus substrate concentration. Each bacterium was grown on at least four of the six substrates: glucose, maltose, sucrose, cello...
متن کاملCharacterization of Several Bovine Rumen Bacteria
DEHORITY, B. A. (Ohio Agricultural Research and Development Center, Wooster). Characterization of several bovine rumen bacteria isolated with a xylan medium. J. Bacteriol. 91:1724-1729. 1966.-Studies were conducted to characterize eight strains of bacteria isolated from bovine rumen contents, by use of a medium containing xylan as the only added carbohydrate source. Based on morphology, biochem...
متن کاملCell envelope morphology of rumen bacteria.
The cell walls of three species of rumen bacteria (Bacteroides ruminicola, Bacteroides succinogenes, and Megasphaera elsdenii) were studied by a variety of morphological methods. Although all the cells studied were gram-negative and had typical cytoplasmic membranes and outer membranes, great variation was observed in the thickness of their peptidoglycan layers. Megasphaera elsdenii evidenced a...
متن کاملComparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.
Maintenance energy expenditures were mesured for five rumen bacteria, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Bacteroides ruminicola, Megasphaera elsdenii, and Streptococcus bovis, by using a complex medium with glucose as the carbon source. Large differences (as high as 8.5-fold) in maintenance energy expenditures were seen among these bacteria. The suggestion is made that maintena...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 16 شماره
صفحات -
تاریخ انتشار 2011